Make state of the art medical devices

7 minute read.

The new European Union Medical Device Regulation will protect patient safety by requiring healthcare companies to make products that are “state of the art,” a term that’s easily misunderstood. This law is best explained with an example from cars,  comparing today’s state of the art with to the 1980’s television series Knight Rider, where David Hasselhoff fought crime in a talking, self-driving car.

Knight Rider

Watching a 1-minute trailer from 1984’s “Knight Rider” may make you smile, if you don’t take it (or anything) too seriously.
Today, we have talking and self-driving cars, but they are not considered “state of the art” by government regulations, which require state of the art safety features. You’re probably familiar with generally accepted state of the art for automobile safety:

  • Seatbelts
  • Brake lights
  • Air bags
  • Child safety-seat securing hooks
  • Side-impact safe doors
Self-driving cars exist, and may be the latest technology, but they are not mandatory because there’s not enough evidence that they protect public safety yet; they are not “generally accepted state of the art.”

Similarly, some medical device features seem like good ideas but aren’t “generally accepted state of the art” because there’s not enough evidence that they reduce risk to patients. The MDR requires companies to continuously review competition and public safety reports to prove that they’ve reduced risk to patients As Far As Possible, which includes having state of the art products.The concept of regulations that improve safety may be more easily visualized with cars. For example, in 2016 an estimated 16,000 lives were saved in the U.S. thanks to seat belts. But, healthcare is a bigger risk than automobile accidents, with 80,000 – 250,000 unnecessary deaths in the U.S. each year due to healthcare errors. Similar data worldwide led to the EU MDR, and the U.S. is considering similar healthcare reform.Medical device safety is more complex than car safety, and state of the art is a combination of design, manufacturing process, surgeon training, etc. I’ll demonstrate this with a few examples.

Spine implants: new technology, but not state of the art

New medical technology is not always state of the art. For example, motion preserving spine implants are new technologies, but may add risk to patients therefore are not generally accepted state of the art.

Before motion-preserving spine implants, surgeons used spine-fusion implants to prevent spinal vertebra from moving, usually to protect the spinal cord, sometimes to reduce pain (this is a controversial topic – learn more.) A concern developed that fusing one set of vertebra caused more motion in other vertebra which led to problems in 6 to 8 years. In the 2000’s several start-up companies developed “motion preserving” spine implants to replace fusion devices.

Motion-preserving devices have not become state of the art because the benefits are unproven and the new technology has higher risks than previous technologies. The added risk come from surgeons having to learn new procedures that are more complex than previous spine implants, and from unknown long-term consequences of the new technologies. The implants shifted over time and many patients suffered unnecessarily.
Manufacturers settled class action lawsuits and national health insurance programs refuse to pay for the procedure, especially because it’s 10X more expensive than previous spine implants. Long-term studies of patients with motion-preserving implants haven’t shown benefits that justify the risks or costs. In other words, new spine technology does not mean it’s state of the art healthcare, it could be adding both risk and costs to public healthcare.

Previous medical device regulations did not enforce state of the art safety, which is why products that add risk and cost are still on the market. Unfortunately, most patients rely on their physicians to advise them despite many surgeons are unaware of the risk/benefit analysis or cost. And, some physicians are incentivised by medical device companies to suggest the more expensive implants. All of this is why the MDR will hopefully benefit society.

Robotic spine surgery: New and effective, but still not state of the art

Some new technologies can be safe and beneficial but are not state of the art because not everyone’s infrastructure is ready for new technology. This is the case with robotic assisted spine surgery.

Many spine surgeries use robotic surgery or some type of nerve-monitoring technology to protect patients’ spinal cords during surgery. This new technology is generally considered beneficial, therefore would almost be considered “state of the art” by the MDR definition, but it is not because it is only true in specific cases where the hospitals have sufficient infrastructure and surgeons are sufficiently trained and experienced. The EU MDR applies to all countries in the European Union, therefore to be state of the art the technology would have to apply to the infrastructure and training of almost 30 European countries.In other words, a company can sell nerve-monitoring equipment to hospitals based on improved results, but not all spine implant companies would be held to the standard of robotic surgery outcomes because these new technologies aren’t yet “generally accepted state of the art.”

Hip implants: Old and ambiguous

Many established technologies are difficult to define as state of the art because many things besides the technology contribute to patient safety, such as manufacturing methods, surgeon training, etc. For example, hip implants have been available since 1940, yet we still struggle understanding what is and what is not state of the art because designing, manufacturing, and shipping medical devices is much more complex than automobile safety features like seat belts and child safety seats.

Hip implants seem simple at first. One part goes into the acetabulum of your hip, the other part into the femur of your leg, and there may be a plastic liner.

But, when a patient needs a hip implant they rarely understand the complexity of designing, manufacturing, and shipping implants, or the challenges of training surgeons to use each company’s product. Here are a few of the challenges in making state of the art hip stems:
The design may have choices between the amount of chrome in CoChMg femoral heads, or heat treatments to resist pitting or corrosion, or polishing to increase smoothness and decrease wear. Plastic components may be UHMWPE with proprietary methods to reduce wear through increased density and cross-linking,  and metal components may have nano-materials to bond to bone, or may be Ti6Al4V or Ti6AL4V ELI.
The tools and instruments may or may not have had thorough user-centered design, or human-factors testing. A surgeon implanting a system at as little was 3 degrees variance could cause failures; we do not know if all surgeons are effectively trained on the instruments.
Is the surgeon effective? Is this safety of the device, or safety of a healthcare system that involves many people? How was the hip stem manufactured? Has that process changed since the original design? What about quality-control? How does a customer evaluate quality control of an entire company and distribution system?

Consider when Sulzer Orthopedics shipped 35,000 hip stems with toxic oil in them, resulting in thousands of patients suffering.

Over 9,000 Sulzer hip stems were implanted and 4,000 failed before the cause was identified.  Thousands of people suffered eroding bones, requiring another surgery and impacting their ability to walk for the rest of their lives. Over $1 Billion in lawsuits bankrupted Sulzer, but patients said they’d rather walk normally than have received insurance money.

The reason for Sulzer’s recall was traced to a seemingly simple decision on their manufacturing line that even today would be difficult to detect and monitor, much less simplify for patients to understand. The Sulzer hip implant recall was just one example of the challenge of identifying state of the art medical devices, and many more examples exist.

Oh shit, now what?

The EU-MDR can’t define what is state of the art for every situation so it requires that each product be compared to competitive products’ safety features every 1-2 years. In other words, each company must prove that they are “state of the art,” and what is considered state of the art will change based on competitive technologies and what is “generally considered state of the art.”

In other words, your product’s complications must be less than that of competitors and alternative treatments, however you achieve that.

Companies must submit two documents supporting their product, post-market surveillance and clinical data. Post-market surveillance is current, real-world data on the safety of each product or group of products. Clinical data includes competitors’ products, safety data, and alternative treatments; post-market surveillance includes the manufacturer’s product safety. State of the art is demonstrated by comparing clinical data to post-market surveillance.For now, companies must do their best to find clinical data publicly. In the future all companies and the general public will have access to this information online. The MDR is creating new agencies that will look at this data and see if medical device features truly improve patient safety; if so, those features will become state of the art. This is similar to how governments currently treat automotive safety.

Government regulations require state of the art in new cars but do not enforce all innovations until there’s enough evidence that these features impact public safety. Agencies such as the U.S. National Highway Traffic Safety Administration (NHTSA) keep consumers informed about new technologies that aren’t required.

Over time, these features may prove that they add to public safety enough to be considered state of the art, at which time they may become required by regulations. Similarly, medical devices sold in Europe will be tracked online in the EUDAMED database, which is still being designed and will probably continuously improve.

The EU-MDR will try to minimize risks to patients by ensuring that new technologies are compared to generally accepted state of the art in terms of patient safety, and that new technologies are justified when the benefits outweigh additional risks. See my article on risk-benefit analysis for that step.


“State of the art” for the EU MDR does not mean the latest technology, it means the features and systems that are proven to reduce risk to patients. State of the art must be established every year for Class III and IIb medical devices, two years for Class IIa devices, and “as necessary” for Class I devices.

State of the art is complex, based on a combination of product features, manufacturing processes, training, and the realities of hospital systems in diverse countries.The MDR will create an online database, EUDAMED, with transparent, public data on medical device safety. That data will be used to determine “state of the art,” but until then companies must seek and use published research data.

Learn more

State of the art requires complying with Risk Management priorities, which is described in another article Reducing Risk As Far As Possible
There’s more to MDR. For example, there are requirements on how to update safety concerns and which information must be displayed on a company’s web page. You can learn in my articles on The Big Picture or, if you’re familiar with previous European medical directives, “MDR: the medical device regulation formerly known as MDD
The MDR will be mandatory by 2020; to be fully prepared consider working with one of these training or consulting companies to help your team prepare.

Please share

Please share this article if you think others could benefit.
Follow me on Linkedin for occasional articles. Not all articles are published, so consider browsing my blog or subscribing for annual updates.

For fun

A guy in England spent 10 years converting his 1984 Trans Am into a replica of David Hasselhoff’s Knight Rider car, complete with the same voice and 1980’s “state of the art” technology. See it in this video: